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Abstract. Following Flaschka and Newell we have formulated the inverse problem for 
Painlevt IV, with the help of similarity variables. The Painlevt IV arises as the eliminant 
of the two second-order ordinary differential equations originating from the non-linear 
Schrodinger equation. We have obtained the asymptotic expansions near the singularities 
at 0 and CC of the complex eigenvalue plane. The corresponding analysis then displays 
Stokes phenomena. The monodromy matrices connecting the solution Y, in the sector S, 
to that in S,,, are fixed in structure by the imposition of certain conditions. We then show 
that a deformation keeping the monodromy data fixed leads to the non-linear Schrodinger 
equation. At this point we may mention that, while Flaschka and Newell did not make 
any absolute determination of the Stokes parameter, our appraoch yields the values of the 
Stokes parameter in an explicit way, which in turn can determine the matrix connecting 
the solutions near 0 and cc. Such a realisation was not possible in the approach of Flaschka 
and Newell. Lastly we show that the integral equation originating from the analyticity and 
asymptotic nature leads to the similarity solution previously determined by Boiti and 
Pempinelli. 

1. Introduction 

Recently two important but parallel theories have been developed for the complete 
analysis of the non-linear partial differential equation. One is the method of inverse 
scattering transforms [ I ]  and the other is that of monodromy deformation [2]. Though 
several authors have enriched the subject of IST, the contributions to the field of 
monodromy deformation ( M D )  are relatively few. The only exhaustive approach is 
that of the Kyoto school, mainly led by Ueno and Date [3] and Jimbo and Miwa [4]. 
Another approach is that of Flaschka and Newell [ 51. While the method of the Japanese 
school is relativity abstract, being based on infinite-dimensional Lie algebras, that of 
Flaschka and Newell ( F N )  is more concrete and oriented to special non-linear equations, 
through its connection to the special class of the PainlevC equation. One of the best 
points of the FN approach is that it exhibits very clearly how the asymptotic expansion 
can be used in conjunction with analyticity arguments to analyse Stokes phenomena, 
and hence the monodromy deformation problem. But here we can indicate a point of 
departure from the treatment of FN. In the paper of FN, the absolute determination 
of Stokes parameters was not possible, but here we show that, by recourse to a classical 
analysis of Sibuya [6], it is possible to find the explicit values of the Stokes constants. 
These values can then be utilised in the equations determining the matrix connecting 
the solution vector near 0 and CC for their determination (see equation (31) in § 4). In  
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this connection it can be noted that almost all the integrable non-linear equations 
reduce to some PainlevC transcendents through the similarity variables. On the other 
hand, the non-linear Schrodinger equation reduces to a pair of coupled ordinary 
equations equivalent to the Painlevi IV as shown by Boiti and Pempinelli [7]. In this 
paper we want to apply the methodology of FN, slightly amended by incorporating 
the theory of Sibuya, to the case of PainlevC IV. At this point we may mention that, 
though the works of [ 3 , 4 ]  encompass all the PainlevC equations, the formalistic nature 
of their approach is quite difficult to appreciate in terms of the results of any particular 
equation. On the other hand, our approach is of a pedagogical nature and clearly 
indicates the ways and means of circumventing the difficulties encountered in a analysis 
of the monodromy deformation problem. 

2. Formulation 

The non-linear Schrodinger equation under consideration is 

iq, - qxx = * 2q2q*. 

The AKNS inverse problem pertaining to equation (1) is 

u l x  = -i5'ul + 4 ~ 2  

v2x = i5 'v2 + rvl 

along with 

U,, = Au, + Bu, 
~ 2 ,  = CUI + D u ~  

(3) 

where A, B, C, D are well known functions of q, r and 5' and for NLSE we assume 
q = r*. The similarity variable which can be found either by a Lie point symmetry 
analysis or by a scaling argument is given as 

= X t - - l / 2  q ( x ,  t )  = r l / 2 f $ ( x / r l / 2 ) .  

We then convert equation (1) to the ordinary non-linear coupled system of differential 
equations 

--(&+if$) d = * 2 4 2 4 * .  
dz 

(4) 
The main trick of FN is to convert the Lax pair, (2)  and (3),  to such variables, for 
which we set 

= v(z, 5) 
so that we have 

u : = - i & n ' + f $ u 2  

u3=i5u2+d*v'  
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In matrix form we can set 

where 

A ,  = ( - i z  -i4”) 
-44*  

- ( & + + i z 4 )  
(4: -+iz4*) - 44* A2 = 2i 

Equations ( 5 )  and (7) will form the basis of the asymptotic expansion that we are 
going to perform in the next section. 

3. Asymptotic expansion 

For the constIuction of the asymptotic expansion, we set, following Wasow [8], 

Equating different powers of 6 in (9) we construct equations for C,, which can be 
solved to yield the two independent sets of solutions 

At this point it is interesting to note an  identity which will be useful later. From 
equation (4) we note 

44: - 4 *#= - $z&#* = +i (12) 
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To obtain the asymptotic expansion near 5 = 0, we put 6 = 1/ q and let q + a3 in 
equation (7) .  Then (7) is transformed to 

V, = -(A27)-' + A ~ T - ~ +  A ~ v - ~ )  V. 

v =  q p  c C k p  

(13) 

We then set 

so that we obtain 

( p  - k / q ) T p  C C ~ T - ~  = - (A2q- '+A,q-2+A0q-3)qp  1 C ~ T - ~ .  

Then the degeneracy condition for CO leads to the following equation for p :  

det[A2+ Zp] = 0 (14) 

p = A[ ( 4z + t i z4  ) ( 4 1: - ti24 * ) - ( 44 *)'I = 2 k. 

dp ' ldz  = 0 

from which we can obtain 

(15) 

However, note that 

if and only if 44* = constant. (16a) 

So the set of solutions near 6 = 0 is 

where 

and 

where u ( z )  is the normalising factor for the solution near 6 = 0  given as 

u = I 4 d z  u* = I 4* dz. 

In the above expressions the factors occurring can be simplified if we use equation 
(15 ) ,  but we have preferred to keep the general structure. At this point we mention 
some important features of equations ( 5 )  and (6).  

( a )  If u ( 1 ,  6, z )  is a solution then Mu*( l ,  e*, z)  is also a solution. 
( b )  If M;*(2, & * z )  is a solution then v'(2, 6, z) is another solution, where M = (:A) 

and U( n,[, z )  denotes the solution vector ( u l ,  u 2 )  with n = 1,2  indicating the first and 
second type of solution. 
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4. Regions of growth and decay 

The next step in our analysis is the segregation of zones in the complex 6 plane, where 
the solutions defined in the above section show definite patterns of dominancy or 
subdominancy. From expressions (10) and (11) we can make some important 
inferences, shown in table 1. 

In figure 1 we have depicted this division of the complex eigenvalue plane into 
several sectors. Let us recall that the lines in the 6 plane originating from the origin 
on which the solution is maximally dominant or recessive are called Stokes lines. In 
our above situation arg 6 = in, in, in, in  are Stokes lines and the sectors are defined 
as 

S , = &  l ltl 'p for some p 

+( j - 1 ) n  c arg 6 < $jn 

with 
j=1 ,2 , . . ,  , 

The anti-Stokes lines are 
arg 6 = 0, in, n, +T, 2n. 

Table 1. 

O s arg 5 < f n U '  large v 2  small 
i n s  arg 5 < n U' small v2  large 
n s arg 5 < t n  U' large v 2  small 
+ n s a r g [ < 2 r r  V I  small v 2  large 
2 7 ~  s arg [< 2~ + S v 1  large v 2  small 

Figure 1. Division of the compex eigenvalue plane into different sectors. Stokes lines 
(wavy lines) are given by argt=$.rr ,  3.1, $ H  and i 7 ~ ;  anti-Stokes lines (straight lines) are 
given by arg t = O ,  f ~ ,  TT, ; H ,  277. 



3746 A Roy Chowdhury and M Naskar 

In the above and also in the whole of the following discussion we have followed 
the notation detailed below. 

u:”(k, 6, z )  denotes a solution of the linear equations (2)  and (3) ,  where i denotes 
the first or second component as above, j denotes the sector and k denotes the type 
of solution. In general we have two types of solutions for our 2 x 2 matrix system. 

The next important stage is to write down the basic form of the matrix or matrices 
connecting the solution vectors in several sectors. For this it is important to observe 
that a solution which was dominating in one sector may become subdominant when 
its leading terms are cancelled by the contribution from the other component in the 
other sector. This fact means that the connection matrices are all triangular. Explicitly 
we have 

u * = u l ( u  1 0  1) 

u 1 = u 2 ( o  1 b  1) 

u4=..(C 1 0  1) 

Now utilising the symmetry properties noted after equation (18) and by recourse 
to (19) we obtain 

from which i t  follows that 

a y J  = u’,”( 1 + bc) + ( a  + c +  abc)u:2’ 

uL2) = bull’+ ( I  + ab)u‘,”. 

Now crossing this zone we come back to the first sector again. Hence 
u ( l ) -  ( 1 1 -  - u4 - ( 1  + bc)u\”+(a + c +  abc)u’,’’ 

u i z l  = duLl) + 

= u‘, l ’ [d(  1 + bc) + d ]  + [ I  + ab + d ( a  + C +  a b c ) ] ~ ‘ , ~ ’ .  
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These relations will be of much use when we connect the solution near the origin to 
that at infinity. 

Now from equations (166)  and (18 )  we observe that 

6 ( 1 , 5 , z )  = u ( l , t ,  z)  -jiv(2,5, z)  In 5 (24) 

where 

The logarithm will disappear if j = 0, k = $ with the help of sector relations which we 
obtain from (24): 

MC(  I , &  

M C ( ~ , ( ,  z)  = ij(2,5, z).  

So if in the sector 0 s  arg 6 < 2 ~  the solution is C then C(5 
fundamental solution in (27r,4?r) where 

z) = e2lTk;  C( 1,5 ,  z)  - rj ~ ( 2 , 5 ,  z) 
(25) 

z)  = U([, z ) J  is a 

e-4irrk 

J = (  
2 r j  

It is interesting to note that 
uo to U ,  as 

U, = uOA 

with 

A = ( "  Y S  ') 

e4.rrik O )  

det J = 1 for all K .  We now seek the matrix connecting 

Now det U , =  1 and 

- 2i k ( 4 z  + f iz4 ) 
( i 4 4 * +  k ) ( i44*  - k)  

det UO = 

so that 

( i 4 4 *  + k)( i4+* - k)  det A = 
- 2i k( + $zd) ' 

Then ( a ,  b, c, d, a, ,O, y, 6, det U, = 1 and the coefficients of the asymptotic expansions) 
form the monodromy data for our system. 

4.1. Properties of matrix A 

Now it follows from equation (27) that 

U,( 5 e'"') = U,,( 6 e2"')A 

= UO(5)JA 
and in the last sector 
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leading to 

We now set 5 = 
and obtain the important and fundamental relations 

in the solution U ,  , apply M = ( y  A )  using relations (20)-(23) 

from which we deduce 

P Y  e-Zr ih  1 = (-x6 e 2 n l h  + aprj e - - ? ~ ~ A  - 

a = - 2 a y  s i n ( 2 r k )  - rja' e - 2 a ' h  

b = s i n ( 2 r k ) +  rjP' e-'r1h 

1 + a b  = -py  e ? r l h  - .prj e - l - ' A  + e - ? n l h ,  (31) 

Until now we have been following the methodology laid down in reference [5]. But, 
as can be seen clearly, this approach, though i t  helps us to obtain the properties of 
the monodromy data, does not allow us to determine the Stokes matrices absolutely. 
In the next section we show that, by using the method in a paper by Sibuya [6], we 
can explicitly determine the Stokes matrices which in turn can lead to a complete 
determination of ( a ,  /3, y ,  a ) ,  the matrix connecting the solutions near zero to that at 
infinity. 

5. Sibuya's approach to Stokes parameters 

In reference [6] Sibuya treats the equation 

d'v 
d 5' (5" + a ,  E' + . . . + a ,  - ,5 + a ,  ) t' = 0 -- 

under the following assumptions. 
( i )  The differential equation (32) has a unique solution: 

U =  U,((,  a , ,  . . . , a,). 

( i i )  v is an  entire function of the parameters (t, a , ,  a ? ,  . . , , a,).  
( i i i )  v admits an asymptotic representation: 

as € tends to infinity in the different sectors, where E,(.& 1 )  are represented as 

and r,, A,,n, B+," are polynomials in ( a l . .  . a u ) .  
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Now if we put 
X 

(1 + a,(-' + . . .  + a,5-")'" = 1 + 1 bk5-k 
A = I  

then the quantities r, and A,,n are given by 

along with 

(iv) If we choose 4 such that exp[i(p + 2 ) d ]  = 1 then the function 

With 8 = e x p [ i ( 2 r / p  + 2)] the solution in the j t h  sector is given as 
U t i ,  eIda, . . . e'+a,) is also a solution. 

as 5 + x in the sectors. 
are linearly independent because U , , _ ,  is 

subdominant in the ( j  + 1)th sector and  uFit2 is dominant. Therefore U, is a linear 
combination of U:::  and U:: ; :  

(36) 

(v )  The two solutions u , , + ~  and 

U,((, t )  = C , ( I ) V J T I  + E , ( t ) t ' , + z  

where c,, < are Stokes multipliers. For p = 2 

-i exp( - r b z )  j even 
-i exp( r b 2 )  

< = {  j odd (37) 

b, = :az - iaf  

We have quoted the above result to improve the clarity of our case. To apply the 
above result we first single out the second-order equation by eliminating any one of 
the components. 

u l E E  = { - 165' + 8z5 - 4i - Z' + 5-'[Si(4*4, - 44:) - 4 z ~ + * ]  

By eliminating U? we obtain 

+ (-'[ - 2 i 4 4 *  - 4 4 2 4 * 2  + 4(4: + ;iz4)(4: - ;iz4*)] + . . .} (38) 

where we have not written down the higher terms as they will not be important for 
6 + E. 

Scaling the variable (, U as 22 = ( I ,  4u = U' we arrive at 

v ; E E  = [t" + 25' - (i - az2) - 45 ' - ' (44f  - 4*4: - i i z44*)  + . . .]vi. (39) 

Since this is now a scalar equation we will omit the subscript 1 and  call it U .  We 
attach the index 'j' to t' as u ( ~ )  will denote the solution in the sector identified by the 
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letter j which will be one of those described at the start of § 4. We will now utilise 
the results of Sibuya for equations of type (39), for which the identification of solutions 
of (39) with those of (6) are essential. If this is done then equation (36), along with 
(37), will yield the Stokes parameters. To proceed with the programme outlined above 
we first switch from vector to matrix notation for the solutions in (10) and (1 1). That 
is, the matrix solution is constructed as 

where 

(1:;) is actually C(1, z, 5) and (::I) is equivalent to ~ ( 2 ,  z, 6 )  

both in the exact and asymptotic situations. If we affix a subscript j as before then 

will denote the solution in the j th sector. Now in our particular case we have 

U;;) = ut& + aut:) (41) 
and from equation (36) 

But we have the identification U:& = u(-~), U;:) = 
equations, when coupled with (41) and (42), yield 

and U$) = ( - i4)u(o). These 

1 
a = - c  - 1  

14 
E- l  = 1. 

Furthermore 
u ( ~ )  12 = U;:) + bu,':). 

But 

Now 

U ( 2 )  = c2vi3) - c2U(4). 

Comparing (44a) and (45) with the help of (44b) we obtain 

b = -i4c2 E2 = -1. 

Similarly we deduce 

d = -  i 4 C 6  1 -  C6 = -1  
c = ( l / i 4 )c - l  

E - ,  = 1 

(43) 

(47) 
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where the cj are given by equation (37) with 

b2 = f(i - zz ). 
1 2  b 1 -  - -LZ 2 

It is quite important to observe that our explicit determination of the Stokes 
parameters respects our earlier derived constraints, a = c, b = d. Furthermore, if 
these explicit values are used in (31 )  then it is, in principle, possible to determine 
(a, p, y, 6) which was not the case with Flaschka and Newell's method. 

6. Properties of the monodromy data 

( a )  The matrix functions vj are holomorphic in Sj = (5,151 > 0 and f(j 
arg 5 < in--} such that 

vj - uj - = ( 1 + C ' +  5 . . . )(e@ o e-* 0 )  

e = 2it2 - iz5 as 161 + 03 in sj 
and 

vj+l = vjAj. 

( b )  A matrix function w of the form 

with G(6) holomorphic, exists such that for 6 E S, vl(5) = w(5)A with 

( i 4 4 *  + k)(i&$* - k) 
detA = 

- 2ik(bZ + $24) * 

(c)  The solution matrix v ( 5 )  has the symmetry 

( d )  A, matrices are independent of z. So differentiating v i+ ,  = vjAj with respect 
to z and multiplying by vlT21 we obtain 

so that ujZv,~' is well defined in a deleted neighbourhood of 6 = CO and its asymptotic 
expansion is that of CziT1,  uniform for 16 1 > p. Now using (48) and its x derivative 
we obtain 

which is nothing but the matrix occurring in the L operator pertaining to NLSE. 
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4" 

I f b  
Figure 2. Contours for the integral equations. 

Similarly, near 5 = 0 we have 

w,w-l = C Z C 1  = p(5) 

with 

Evaluating I?&-' we observe that C6fi-' is equal to the time part of the Lax operator. 
Therefore all we need is to demonstrate that the non-linear equation is a result of 
isomonodromy deformation of the linear problem. 

Writing out the contour integrals over the contours shown in figure 2 we can prove 
that (we d o  not give the details of the computation, as the method of reference [9] 
remains almost unaltered) 

$*  = - lim 2i5u' e-' 

4 = lim 2i5uz e' 

(55) 
E-== 

€-x 

and finally we obtain 

which satisfies both of the equations (6) and ( 7 ) .  

7. Conclusions 

In this paper we have studied in detail the monodromy problem related to  the non-linear 
Schrodinger equation and Painlevk IV, through similarity variables. Though the general 
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problem of deformation of second- and third-order equations has been studied by the 
Japanese school, we think that the above analysis helps to clarify any special features 
that may arise in any particular non-linear problem. 
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